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ABSTRACT

A finite element approach using NASTRAN is developed for solving time-dependent fluid-

structure interaction problems, with emphasis on the transient scattering of acoustic waves from

submerged elastic structures. Finite elements are used for modeling both structure and fluid domains

to facilitate the graphical display of the wave motion through both media. For the fluid, the use of

velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach

is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected

to an incident tone burst. The use of an analogy between the equations of elasticity and the wave

equation of acoustics, a necessary ingredient to the procedure, is summarized.

INTRODUCTION

Computational structural acoustics is concerned with the prediction of the acoustic pressure

field radiated or scattered by submerged structures subjected to either mechanical or external (fluid)

excitation. When the excitation is time-harmonic, the most common numerical approach for solving

the interaction problem is to couple a finite element model of the structure with a boundary element

model of the surrounding fluid (Ref. 1-8). Other fluid modeling approaches have included finite

element (Ref. 9-20), combined finite element/analyticaI (Ref. 21-23), and T-matrix (Ref. 24-26).

For time domain (transient) analysis, there arc several computational approaches which can be
used:

the transformation of frequency domain results to the time domain using the Fourier transform

the use of a fluid loading approximation such as the doubly asymptotic approximation (DAA)

(Ref. 27)

• the time domain boundary element approach, which models the fluid with the retarded potential

integral equation (Ref. 28-31)

• the fluid finite element approach, which models the exterior fluid domain with finite elements

truncated at a finite distance from the structure and terminated with an approximate radiation

boundary condition to absorb outgoing waves (Ref. 9-20)

To our knowledge, the retarded potential integral equation has been used only for special geometries

(e.g., axisymmetry) because of the method's relatively high computational cost. The DAA approach,

which has been used successfully in underwater shock analysis (Ref. 32-34), may not be adequate for

transient acoustics, where the interest is in the response in the fluid as well as in the structure. The

principal computational trade-off between the fluid finite element approach and the other three

approaches is that the finite element approach yields large, banded matrices, whereas the other three
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approaches (which depend on boundary element calculations) yield smaller, densely-populated

matrices. This trade-off often favors the finite element approach for long, slender structures like

ships which are "naturally banded." In addition, of the four approaches listed, only the fltfid finite

element approach has directly available an explicit fluid mesh which can be used for graphical display

of the wave motion through the fluid. Since a significant part of our interest involves the display of

wave propagation through both structure and fluid, we therefore formulate the transient acoustics

problem using the fluid finite element approach. The principal drawbacks to a fluid finite element

approach are the need for an approximate radiation boundary condition at the outer fluid boundary,

the requirements on mesh size and extent (sometimes leading to frequency-dependent fluid meshes

(Ref. 17)), and the difficulty of generating the fluid mesh.

Dynamics problems involving the interaction between an elastic structure and an acoustic fluid

have been formulated for finite element solution using pressure (Ref. 9,10), fluid particle

displacement (Ref. 11-13,15,17), displacement potential (Ref. 16), and velocity potential (Ref. 18,19)

as the fundamental unknown in the fluid region. In three dimensions, the pressure and displacement

formulations result in, respectively, one and three degrees of freedom per finite element mesh point.

Thus the pressure approach has the advantage of fewer unknowns and a smaller overall matrix profile

or bandwidth if the grid points are properly sequenced. On the other hand, the displacement

approach results in symmetric coefficient matrices (in contrast to the pressure fornmlation, for which

the matrices are nonsymmetric) and a fluid-structure interface condition which is easier to implement

with general purpose finite element computer programs. However, the displacement approach also

suffers from the presence of spurious resonances (Ref. 15), a situation which can be bothersome in

time-harmonic problems, either forced or unforced. The principal disadvantage of the pressure

formulation, nonsymmetric coefficient matrices, can be removed merely by reformulating the pressure

solution approach so that a velocity potential rather than pressure is used as the fundamental

unknown in the fluid region (Ref. 18). For some situations, particularly time-harmonic problems

involving damped systems and time-dependent problems, significant computational advantages result.

The principal goal of this paper is to develop in detail the symmetric velocity potential

formulation for application to the specific problem of transient acoustic scattering from submerged

elastic structures. Previously (Ref. 18), the symmetric potential formulation was described only in

general terms for a wide class of fluid-structure interaction problems with no details concerning

specific types of applications such as vibrations, shock response, or acoustic scattering.

From an engineering point of view, it is convenient to be able to make use of existing general
purpose finite element codes such as NASTRAN, because of their wide availablity, versatility,

reliability, consultative support, and abundance of pre- and postprocessors. Thus the next section
summarizes an analogy between the equations of elasticity and the wave equation of acoustics. Such

an analogy allows the coupled structural acoustic problem to be solved with standard finite element
codes.

STRUCTURAL-ACOUSTIC ANALOGY

Since we wish to solve the coupled structural acoustic problem using standard finite element

codes, we summarize here the application of such codes to the wave equation of acoustics (Ref.

35,36),

V2p = p/c

where V 2 is the Laplacian operator, p is the dynamic fluid pressure, c is the wave speed, and dots

denote partial differentiation with respect to time.

On the other hand, the x-component of the Navier equations of elasticity, which are the

equations solved by structural analysis computer programs, is

(i)
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X+2G X+G, 1+ u,:y + u,zz + --d--t,',xy + W,xz)+ -6-fx = v i' (2)

where u, v, and w are the Cartesian components of displacement, X is a Lame" elastic constant, G is

the shear modulus, fx is the x-component of body force per unit volume (e.g., gravity), p is the mass

density, and commas denote partial differentiation.

A comparison of Eqs. 1 and 2 indicates that elastic finite elements can be used to model scalar

pressure fields if we let u, the x-component of displacement, represent p, set v = w = 0 everywhere,

fx = 0, and X = -G. For three-dimensional analysis, the engineering constants consistent with this last

requirement are (Ref. 36)

,o Oe/c2, (3)Ee =10 _ Ge, Pc =

where the element shear modulus Ge can be selected arbitrarily. The subscript "e" has been added to

these constants to emphasize that they are merely numbers assigned to the elements.

A variety of boundary conditions may also be imposed. At a pressure-release boundary, p = 0

is enforced explicitly like other displacement boundary conditions. For gradient conditions, the

pressure gradient 0p/0n is enforced at a boundary point by applying a "force" to the unconstrained

DOF at that point equal to GeA0p/0n, where A is the area assigned to the point and n is the outward

normal from the fluid region (Ref. 36). For example, the plane wave absorbing boundary condition

019 = -P (4)
On c

is enforced by applying to each point on the outer fluid boundary a "force" given by -(GeA/c)p.

Since this "force" is proportional to the first time derivative of the fundamental solution variable p,

this boundary condition is imposed in the analogy by attaching to the fluid DOF a "dashpot" of

constant GeA/c. The Neumann condition 0p/0n = 0 is the natural boundary condition under this

analogy. The next higher order local radiation boundary condition, the curved wave absorbing

boundary condition (Ref. 20,37)

0p = _p _ .p_, (5)
On c r

where r is the radius of the boundary, is enforced under the analogy by attaching in parallel both a

"dashpot" and a "spring" between each boundary point and ground.

At a fluid-structure interface (an accelerating boundary), momentum and continuity

considerations require that

O_p_= -P_n, (6)
On

where n is the normal at the interface, p is the mass density of the fluid, and ii n is the normal

component of fluid particle acceleration. Under the analogy, this condition is enforced by applying to

the fluid DOF at a fluid-structure interface a "force" given by -(GepA)iin.

To summarize, the wave equation, Eq. 1, can be solved with elastic finite elements if the three-

dimensional region is modeled with 3-D solid finite elements having material properties given by Eq.

3, and only one of the three Cartesian components of displacement is retained to represent the scalar

variable p. In Cartesian coordinates, any of the three components can be used. The solution of

axisymmetric problems in cylindrical coordinates follows the same approach except that the z-

component of displacement is the only one which can be used to represent p (Ref. 36).

164



SCATTERING FROM ELASTIC STRUCTURES

In the scattering problem, a submerged elastic body is subjected to a plane wave incident
loading, as shown in Fig. 1. For the time-harmonic case, the excitation has a single circular
frequency co. For the time-dependent (transient) case of interest here, the prescribed pressure
loading is an arbitrary function of time. Without loss of generality, we can assume that tile incident
wave propagates in the negative z direction. The speed of such propagation is c, the speed of sound
in the fluid.

o

ER

PLANE
WAVE

Fig. 1. The scattering problem.

Within the fluid region, the total pressure p satisfies the wave equation, Eq. 1. Since the
incident free-field pressure Pi is known, it is convenient to decompose the total pressure p into the
sum of incident and scattered pressures

P=Pi+Ps, (7)

each of which satisfies the wave equation. (By definition, the incident free-field pressure is that
pressure which would occur in the fluid in the absence of any scatterer.)

We now formulate the problem for finite element solution. Consider an arbitrary, submerged,
three-dimensional elastic structure subjected to either internal time-dependent loads or an external
time-dependent incident pressure. If the structure is modeled with finite elements, the resulting
matrix equation of motion for the structural degrees of freedom (DOF) is

Mii + Bti + Ku = F - GAp, (8)

where M, B, and K are the structural mass, viscous damping, and stiffness matrices (dimension s x

s), respectively, u is the displacement vector for all structural DOF (wet and dry) in terms of the
coordinate systems selected by the user (s x r), F is the vector of applied mechanical forces applied

to the structure (s x r), G is the rectangular transformation matrix of direction cosines to transform a
vector of outward normal forces at the wet points to a vector of forces at all points in the coordinate
systems selected by the user (s x f), A is the diagonal area matrix for the wet surface (f x f), p is the
vector of total fluid pressures (incident + scattered) applied at the wet grid points (f x r), and dots

denote differentiation with respect to time. The pressure p is assumed positive in compression. In
the above dimensions, s denotes the total number of independent structural DOF (wet and dry), f
denotes the number of fluid DOF (the number of wet points), and r denotes the number of load
cases. If first order finite elements are used for the surface discretization, surface areas, normals,
and the transformation matrix G can be obtained from the calculation of the load vector resulting
from an outwardly directed static unit pressure load on the structure's wet surface. The matrix
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product GA can then be interpreted as the matrix which converts a vector of negative fluid pressures

to structural loads in the global coordinate system. The last two equations can be combined to yield

M{i + Bfi + Ku + GAps = F - GApi. (9)

A finite element model of the fluid region (with scattered pressure Ps as the unknown) results in
a matrix equation of the form

Qp, + Cp_ + Hp, = F(P), (i0)

where Ps is the vector of scattered fluid pressures at the grid points of the fluid region, Q and H are

the fluid "inertia" and "stiffuess" matrices (analogous to M and K for structures), C is the "damping"

matrix arising from the radiation boundary condition (Eq. 4), and F (p) is the "loading" applied to fluid
DOF due to the fluid-structure interface condition, Eq. 6. Using the analogy described in the

preceding section, structural finite elements can be used to model both structural and fluid regions.

Material constants assigned to the elastic elements used to model the fluid are specified according to

Eq. 3. In three dimensions, elastic solid elements are used (e.g., isoparametric bricks for general 3-D
analysis or solids of revolution for axisymmetric analysis).

At the fluid-structure interface, Eqs. 6 and 7 can be combined to yield

0ps
_ - ix.), (11)On

where n is the outward unit normal, and I-[ni and ii n are, respectively, the incident and total outward

normal components of fluid particle acceleration at the interface. Thus, from the analogy, we impose

the fluid-structure interface condition by applying a "load" to each interface fluid point given by

F (p) = -pGeA (iini -- iin), (12)

where the first minus sign is introduced since, in the coupled problem, we choose n as the outward

normal from the structure into the fluid, making n an inward normal for the fluid region. The normal

displacements un are related to the total displacements u by the same rectangular transformation
matrix G used above:

tin = GTu, (13)

where the superscript T denotes the matrix transpose. Eqs. 10, 12, and 13 can be combined to yield

QPs + Cps + Hps - pG_(aA)'rii = -pG_Aii,i. (14)

Since the fluid-structure coupling terms in Eqs. 9 and 14 are nonsymmetric, we symmetrize the

problem (Ref. 18) by using a new fluid unknown q such that
t

q = f Ps at, q = ps. (15)
0

If Eq. 14 is integrated in time, and the fluid element "shear modulus" Ge is chosen as

Oe = -I/p, (16)

the overall matrix system describing the coupled problem can be written as

[o [Av,,i J (17)

where vni (=fini) is the outward normal component of incident fluid particle velocity.

The new variable q is, except for a multiplicative constant, the velocity potential ¢, since
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p = _p$. (18)

Eq. 17 could also be recast in terms of ¢ rather than q as the fundamental fluid unknown, but no

particular advantage would result. In fact, the use of q rather than _ has the practical advantage that

the fluid pressure can be recovered directly from the finite element program as the time derivative

(velocity) of the unknown q.

To summarize, both structural and fluid regions are modeled with finite elements. For the fluid

region, the material constants assigned to the finite elements are

Ee = -102°/I), Ge = -1/p, v e = unspecified, Pe = -1�(pc2), (19)

where Ee, Ge, re, and Pe are the Young's modulus, shear modulus, Poisson's ratio, and mass density,

respectively, assigned to the fuid finite elements. The properties p and c above are the actual density

and sound speed for the fluid medium. The radiation boundary condition used is the plane wave

approximation, Eq. 4, which appears to be adequate if the outer fluid boundary is sufficiently far from

the structure (Ref. 17). With this boundary condition, matrix C in Eq. 17 arises from dashpots

applied at the outer fluid boundary with damping constant -A/(pc) at each grid point to which the
area A has been assigned. At the fluid-structure interface, matrix GA is entered using the areas (or

areal direction cosines) assigned to each wet degree of freedom. (Recall that GA can be interpreted
as the matrix which converts a vector of negative fluid pressures to structural loads in the global

coordinate system.)

The right-hand side of Eq. 17 can be simplified further since, for plane waves propagating in the

negative z direction at speed c, the incident free-field pressure and incident fluid particle velocity in

the z direction are related by (Ref. 38)

Pi = --pCVzi" (20)

Then, like in Fig. 1, if we define 0 as the angle between the normal n and the positive z axis,

Vn i = VziCOS 0 = _picosO/(pc). (21)

For plane waves, the z component of the free-field fluid particle velocity Vzi is the same at all points in

space except for a time delay, which depends only on the z coordinate of the points.

Thus, Eq. 17 can alternatively be written

[0M (_] {_} + [(GB)T (GcA)! {_} + [K O] {q} = _-ApifF-(GA)Picos0/(pc)j._ (22)

This is the form of the equations which we will use to solve the transient scattering problem. The

right-hand side, which has nonzero contributions for both structure and fluid interface points,

depends only on the incident free-field pressure at the fluid-structure interface. For scattering

problems, the mechanical load F is zero. For radiation problems, F is nonzero, and the incident

pressure Pi vanishes.

We note that the structural and fluid unknowns are not sequenced as perhaps implied by the

partitioned form of Eq. 22. The coupling matrix GA is quite sparse and has nonzeros only for matrix
rows associated with the structural DOF at the fluid-structure interface and columns associated with

the coincident fluid points. Thus, the grid points should be sequenced for minimum matrix

bandwidth or profile as if the structural and fluid meshes comprised a single large mesh. As a result,
the structural and fluid grid points will, in general, be interspersed in their numbering, and the system

matrices will be sparse and banded.

167



EXAMPLE: SCATTERING FROM A SUBMERGED SPHERICAL SHELL

The validation of the procedure described above was made by comparing the finite element

prediction of the time history of the structural response of a spherical shell subjected to a step

incident pressure loading with the series solution (Ref. 28,39). These results will not be presented

here. Instead, we will illustrate the approach by calculating the transient response of a submerged,

thin-walled, evacuated spherical shell subjected to a brief tone burst, as illustrated in Fig. 2. For
convenience, we nondimensionalize lengths to the shell mean radius a, velocities to the fluid sound

speed c, and pressures to the fluid bulk modulus pc 2. Thus, nondimensional time becomes ct/a. The

particular problem solved was a 2% thick steel shell immersed in water. Itence, in nondimensional

units, the shell properties arc thickness = 0.02, Young's modulus = 96.9, Poisson's ratio = 0.3, and
density = 7.79.

STEEL

SHEL_

VACUUM_
WATER

PLANE
WAVE

Fig. 2.

The incident free-field pressure pi(z,t) is given by

pi(x,y,z,t) = pi(t + z-a),
c

where (Fig. 3)

Scattering from a submerged spherical shell.

(23)

Po (1 - cos _t)/2, 0 < _t _< 7r

pi(t) = -Po cos wt, _r _< wt _< (n-1)lr
-Po (1 + cos wt)/2, (n-1)_r _< 0Jt _< nTr (n odd)
0, otherwise.

For this problem, po=l, n=5, and wa/c--=rr.

Since this problem is axisymmetric, it was modeled for finite element solution using

NASTRAN's conical shell elements (CONEAX) for the shell and triangular ring elements
(TRIAAX) for the fluid. A typical fluid mesh is shown in Fig. 4, where the shell is coincident with

the inner semi-circle of fluid grid points. The actual mesh used to generate the results which follow

had the outer fluid boundary located at 8 radii, used 24 elements along the inner radius between the

poles and 56 elements in the radial direction, resulting in a total of 25 structural grid points, 6213 fluid

grid points, 24 CONEAX elements, 12096 TRIAAX elements, and 6288 independent degrees of
freedom. For the direct time integration, 800 nondimensional time steps of size 0.025 were used.

Results are presented for both velocity response of the shell and scattered pressure response in

the fluid. Fig. 5 shows plots of time histories of shell velocity in the z direction for the point first

(24)
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Fig. 3. The incident pressure pi(t) (Eq. 24).

Fig. 4, Typical finite element mesh.

impacted by the pressure wave (0=0) and the back side pole (0=180 degrees). We observe from the

figure a significant oscillation in the back side of the shell. Back-scattered pressure time histories are
displayed in Fig. 6 at 3 and 5 radii from the origin. As expected, the scattered pressure at fluid

points is zero until the wave has had time to travel (at unit nondimensional speed) from the spherical
shell. Since the two points displayed are located 2 and 4 radii from the shell, the nondimensional

time delays for the scattered pressure wave to arrive are 2 and 4, respectively.

DISCUSSION

A practical procedure has been presented, using standard capabilities in NASTRAN, for
computing the solution of general time-dependent structural acoustics problems. Although illustrated

for the simple geometry of spherical shell scattering, there is no restriction in the approach to

particular geometries, so that any structure which can be modeled with NASTRAN can be handled.
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One of the major benefits of analyzing transient fluid-structure interaction with a general-

purpose code like NASTRAN is the ability to integrate the acoustic analysis of a structure with other

dynamic and stability analyses. Thus the same finite element model can often be used for modal

analysis, frequency and transient response analysis, linear shock analysis, and underwater acoustic

analysis. In addition, many of the pre- and postprocessors developed for use with NASTRAN
become available for acoustics as well.

170



REFERENCES

1. L.H. Chen and D.G. Schweikert, "Sound Radiation from an Arbitrary Body," J. Acoust. Soc.

Amer., Vol. 35, No. 10, pp. 1626-1632 (1963).

2. D.T. Wilton, "Acoustic Radiation and Scattering from Elastic Structures," Int. J. Num. Meth.

in Engrg., Vol. 13, pp. 123-138 (1978).

3. J.S. Patel, "Radiation and Scattering from an Arbitrary Elastic Structure Using Consistent Fluid

Structure Formulation," Comput. Struct., Vol. 9, pp. 287-291 (1978).

4. I.C. Mathews, "Numerical Techniques for Three-Dimensional Steady-State Fluid-Structure
Interaction," J. Acoust. Soe. Amer., Vol. 79, pp. 1317-1325 (1986).

5. G.C. Everstine, F.M. Henderson, E.A. Schroeder, and R.R. Lipman, "A General Low

Freqnency Acoustic Radiation Capability for NASTRAN," Fourteenth NASTRAN Users'

Colloquium, NASA CP-2419, National Aeronautics and Space Administration, Washington,

De, pp. 293-310 (1986).

6. G.C. Everstine, F.M. Henderson, and L.S. Schuetz, "Coupled NASTRAN/Boundary Element

Formulation for Acoustic Scattering," Fifteenth NASTRAN Users' Colloquium, NASA CP-

2481, National Aeronautics and Space Administration, Washington, DC, pp. 250-265 (1987).

7. A.F. Seybert, T.W. Wu, and X.F. Wu, "Radiation and Scattering of Acoustic Waves from

Elastic Solids and Shells Using the Boundary Element Method," J. Acoust. Soc. Amer., Vol.

84, pp. 1906-1912 (1988).

8. G.C. Everstine and F.M. Henderson, "Coupled Finite Element/Boundary Element Approach
for Fluid-Structure Interaction," J. Acoust. Soc. Amer., Vol. 87, No. 5, pp. 1938-1947 (1990).

9. O.C. Zienkiewicz and R.E. Newton, "Coupled Vibrations of a Structure Submerged in a

Compressible Fluid," Proc. Internat. Symp. on Finite Element Techniques, Stuttgart, pp.

359-379 (1969).

10. A. Craggs, "The Transient Response of a Coupled Plate-Acoustic System Using Plate and

Acoustic Finite Elements," J. Sound and Vibration, Vol. 15, No. 4, pp. 509-528 (1971).

11. A.J. Kalinowski, "Fluid Structure Interaction," Shock and Vibration Computer Programs:

Reviews and Summaries, SVM-10, ed. by W. Pilkey and B. Pilkey, The Shock and Vibration

Information Center, Naval Research Laboratory, Washington, DC, pp. 405-452 (1975).

12. L. Kiefling and G.C. Feng, "Fluid-Structure Finite Element Vibrational Analysis," AIAA J.,
Vol. 14, No. 2, pp. 199-203 (1976).

13. A.J. Kalinowski, "Transmission of Shock Waves into Submerged Fluid Filled Vessels," Fluid

Structure Interaction Phenomena in Pressure Vessel and Piping Systems, PVP-PB-026, ed. by

M.K. Au-Yang and S.J. Brown, Jr., The American Society of Mechanical Engineers, New

York, pp. 83-105 (1977).

14. O.C. Zienkiewicz and P. Bettess, "Fluid-Structure Dynamic Interaction and Wave Forces: An

Introduction to Numerical Treatment," Int. J. Num. Meth. in Engrg., Vol. 13, No. 1, pp. 1-6

(1978).

15. M.A. Hamdi and Y. Ousset, "A Displacement Method for the Analysis of Vibrations of

Coupled Fluid-Structure Systems," Int. J. Num. Meth. in Engrg., Vol. 13, No. 1, pp. 139-150

(1978).

16. R.E. Newton, "Finite Element Study of Shock Induced Cavitation," Preprint 80-110, American

Society of Civil Engineers, New York (1980).

171



17. A.J. Kalinowski and C.W. Nebelung, "Media-Structure Interaction Computations Employing
Frequency-Dependent Mesh Size with the Finite Element Method," Shock Vib. Bull., Vol 51,

No. 1, pp. 173-193 (1981).

18. G.C. Everstine, "A Symmetric Potential Formulation for Fluid-Structure Interaction," J. Sound

and Vibration, Vol. 79, pp. 157-160 (1981).

19. G.C. Everstine, "Structural-Acoustic Finite Element Analysis, with Application to Scattering,"

in Proc. 6th Invitational Symposium on the Unification of Finite Elements, Finite Differences,

and Calculus of Variations, edited by H. Kardestuncer, Univ. of Connecticut, Storrs,

Connecticut, pp. 101-122 (1982).

20. P.M. Pinsky and N.N. Abboud, "Transient Finite Element Analysis of the Exterior Structural

Acoustics Problem," Numerical Techniques in Acoustic Radiation, edited by R.J. Bernhard and

R.F. Keltie, NCA-Vol. 6, American Society of Mechanical Engineers, New York, pp. 35-47
(1989).

21. J.T. Hunt, M.R. Knittel, and D. Barach, " Finite Element Approach to Acoustic Radiation

from Elastic Structures," J. Acoust. Soc. Amer., Vol. 55, pp-269-280 (1974).

22. J.T. Hunt, M.R. Knittel, C.S. Nichols, and D. Barach, "Finite-Element Approach to Acoustic

Scattering from Elastic Structures," J. Acoust. Soc. Amer., Vol. 57, pp. 287-299 (1975).

23. J.B. Keller and D. Givoli, "Exact Non-reflecting Boundary Conditions," J. Comput. Phys., Vol.
82, pp. 172-192 (1989).

24. A. Bostrom, "Scattering of Stationary Acoustic Waves by an Elastic Obstacle Immersed iu

Water," J. Acoust. Soc. Amer., Vol. 67, No. 2, pp. 390-398 (1980).

25. M.F. Werby and L.H. Green, "An Extended Unitary Approach for Acoustical Scattering from

Elastic Structures," J. Acoust. Soc. Amer., Vol. 74, pp. 625-630 (1983).

26. M.F. Werby and G.J. Tango, "Application of the Extended Boundary Condition Equations to

Scattering from Fluid-Loaded Objects," Eng. Anal., Vol. 5, pp. 12-20 (1988).

27. T.L. Geers, "Doubly Asympototic Approximations for Transient Motions of Submerged

Structures," J. Acoust. Soc. Amer., Vol. 64, No. 5, pp. 1500-1508 (1978).

28. H. Huang, G.C. Everstine, and Y.F. Wang, "Retarded Potential Techniques for the Analysis of
Submerged Structures Impinged by Weak Shock Waves," Computational Methods for Fluid-

Structure Interaction Problems, ed. by T. Belytschko and T.L. Geers, AMD-Vol. 26, The

American Society of Mechanical Engineers, New York, pp. 83-93 (1977).

29. Y.P. Lu, "The Application of Retarded Potential Techniques to Submerged Dynamic Structural

Systems," Innovative Numerical Analysis for the Engineering Sciences, edited by R. Shaw, W.

Pilkey, B. Pilkey, R. Wilson, A. Lakis, A. Chaudouet, and C. Marino, University Press of
Virginia, Charlottesville (1980).

30. M.A. Tamm, "Stabilization of the Coupled Retarded Potential - Finite Element Procedure for

Submerged Structural Analysis," Memorandum Report 5902, Naval Research Laboratory,

Washington, DC (1986).

31. M.A. Tamm and W.W. Webbon, "Submerged Structural Response to Weak Shock by Coupled

Three-Dimensional Retarded Potential Fluid Analysis - Finite Element Structural Analysis,"

Memorandum Report 5903, Naval Research Laboratory, Washington, DC (1987).

32. G.C. Everstine, "A NASTRAN Implementation of the Doubly Asymptotic Approximation for
Underwater Shock Response," NASTRAN: Users' Experiences, NASA TM X-3428, National

Aeronautics and Space Administration, Washington, DC, pp. 207-228 (1976).

172



33. D. Ranlet, F.L. DiMaggio, H.H. Bleich, and M.L. Baron, "Elastic Response of Submerged
Shells with Internally Attached Structures to Shock Loading," Comp. Struct., Vol. 7, No. 3,

pp. 355-364 (1977).

34. H.C. Neilson, G.C. Everstine, and Y.F. Wang, "Transient Response of a Submerged Fluid-

Coupled Double-Walled Shell Structure to a Pressure Pulse," J. Aeoust. Soc. Amer., Vol. 70,

No. 6, pp. 1776-1782 (1981).

35. G.C. Everstine, E.A. Schroeder, and M.S. Marcus, "The Dynamic Analysis of Submerged
Structures," NASTRAN: Users' Experiences, NASA TM X-3278, National Aeronautics and

Space Administration, Washington, DC, pp. 419-429 (1975).

36. G.C. Everstine, "Structural Analogies for Scalar Field Problems," Int. J. Num. Meth. in Engrg.,

Vol 17, pp. 471-476 (1981).

37. A. Bayliss and E. Turkel, "Radiation Boundary Conditions for Wave-Like Equations," Comm.
Pure and Appl. Math., Vol. XXXIII, No. 6, pp. 707-725 (1980).

38. R.H. Cole, Underwater Explosions, Princeton University Press, Princeton, NJ (1948).

39. H. Huang, "Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell," J.
Aeoust. Soc. Amer., Vol 45, No. 3, pp. 661-670 (1969).

173


